The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations
نویسندگان
چکیده
We present a new method for solving stochastic differential equations based on Galerkin projections and extensions of Wiener’s polynomial chaos. Specifically, we represent the stochastic processes with an optimum trial basis from the Askey family of orthogonal polynomials that reduces the dimensionality of the system and leads to exponential convergence of the error. Several continuous and discrete processes are treated, and numerical examples show substantial speed-up compared to Monte-Carlo simulations for low dimensional stochastic inputs.
منابع مشابه
Modeling Uncertainty in Steady State Diffusion Problems via Generalized Polynomial Chaos
We present a generalized polynomial chaos algorithm for the solution of stochastic elliptic partial differential equations suject to uncertain inputs. In particular, we focus on the solution of the Poisson equation with random diffusivity, forcing and boundary conditions. The stochastic input and solution are represented spectrally by employing the orthogonal polynomial functionals from the Ask...
متن کاملStochastic Modeling of Flow-Structure Interactions using Generalized Polynomial Chaos
We present a generalized polynomial chaos algorithm to model the input uncertainty and its propagation in flow-structure interactions. The stochastic input is represented spectrally by employing orthogonal polynomial functionals from the Askey scheme as the trial basis in the random space. A standard Galerkin projection is applied in the random dimension to obtain the equations in the weak form...
متن کاملA new stochastic approach to transient heat conduction modeling with uncertainty
We present a generalized polynomial chaos algorithm for the solution of transient heat conduction subject to uncertain inputs, i.e. random heat conductivity and capacity. The stochastic input and solution are represented spectrally by the orthogonal polynomial functionals from the Askey scheme, as a generalization of the original polynomial chaos idea of Wiener [Am. J. Math. 60 (1938) 897]. A G...
متن کاملModeling uncertainty in three-dimensional heat transfer problems
We present a generalized polynomial chaos method to solve the steady and unsteady heat transfer problems with uncertainty in boundary conditions, diffusivity coefficient and forcing terms. The stochastic inputs and outputs are represented spectrally by employing the orthogonal polynomial functionals from the Askey scheme, as a generalization of the original polynomial chaos idea of Wiener [1]. ...
متن کاملEvaluation of Non-Intrusive Approaches for Wiener-Askey Generalized Polynomial Chaos
Polynomial chaos expansions (PCE) are an attractive technique for uncertainty quantification (UQ) due to their strong mathematical basis and ability to produce functional representations of stochastic variability. When tailoring the orthogonal polynomial bases to match the forms of the input uncertainties in a Wiener-Askey scheme, excellent convergence properties can be achieved for general pro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Scientific Computing
دوره 24 شماره
صفحات -
تاریخ انتشار 2002